
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 259, Number 1, May 1980 

ON GENERALIZED HARMONIC ANALYSIS 
BY 

KA-SING LAUI AND JONATHAN K. LEE2 

ABsTRAcT. Motivated by Wiener's work on generalized harmonic analysis, we 
consider the Marcinkiewicz space 6XP(R) of functions of bounded upper averagep 
power and the space St(R) of functions of bounded upper p variation. By 
identifying functions whose difference has norm zero, we show that St(R), 1 <p 
< oo, is a Banach space. The proof depends on the result that each equivalence 
class in cVP(R) contains a representative in LP(R). This result, in turn, is based on 
Masani's work on helixes in Banach spaces. 

Wiener defined an integrated Fourier transformation and proved that this 
transformation is an isometry from the nonlinear subspace '5liV(R) of %R2(R) 
consisting of functions of bounded average quadratic power, into the nonlinear 
subspace GW(R) of V(IR) consisting of functions of bounded quadratic variation. 
By using two generalized Tauberian theorems, we prove that Wiener's transforma- 
tion W is actually an isomorphism from .)2(R) onto 'V2(R). We also show by 
counterexamples that W is not an isometry on the closed subspace generated by 
6V2(R). 

1. Introduction. The purpose of this paper is to find out how Wiener's generalized 
harmonic analysis [18] fits into the framework of contemporary functional analysis. 

For a complex valued Borel measurable function f on R such that 
limT. oo(2 T)-f T'If(x)12 dx exists, Wiener [18] defined the integrated Fourier 
transformation g = W(f) of f as 

g(u)=27 (f-x + f(x)e. dx+ff(x) -ix dx) 

We call W the Wiener transformation. By using a deep Tauberian theorem, he then 
proved that the mean square modulus of the above function f equals the quadratic 
variation of its transformation g, i.e. 

lim 1f| If(x)12 dx = rMn ? | g(u + h)-g(u-h)I2du. (1.1) 
T--),oo TT h --)o 2h J__ 

Now, for allf E L 2 (R), let 

Ilfi = Ilf 2= liM 2 1 T f(X)12 d)/ (1.2) 
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and 

9V3(R) = {ff E- L2(R), Ilfil < o0). 

Note that the set of functions VlS(R) for which the limit on the left-hand side of 
(1.1) exists and is finite is a nonlinear subspace of the linear space %2(R). 

Next, for all Borel measurable g on R, let 

I 00 ~~~~~~~~~1/2 
IIgll = gIINII = lim (2 JI g(u + h) - g(u - h)12du (1.3) 

and 

2212(R) = { g: g is Borel measurable andlI gII < oo. 

Then the set of functions for which the limit on the right-hand side of (1.1) exists 
and is finite is a nonlinear subspace of the linear space 21(R). 

Similarly, we can define the classes of functions 91P(R) and 'V\(R). Both 91P(R) 
and SVt(R) are normed linear spaces when two functions in any one of the spaces 
whose differences have norm zero are identified. Marcinkiewicz [13] and indepen- 
dently Bohr and F0lner [3] showed that 6XP(R) is complete, but the question of the 
completeness of cV?(R) has been open. 

In ?3, we show that ?I(R) is complete for 1 <p < oo. For this, we find that all 
usual methods of proving completeness (cf. e.g. [5], [12]) fail. We have to appeal to 
the theory of helixes in a Banach space X, i.e. continuous functions x(.) on R to X 
such that for all a, b, t E R, Ut{xb-xa} = xb+t-xa+t, where {Ut}eR is a 
strongly continuous group of isometries [8], [14]. Using results from the theory of 
helixes, we are able to show that each equivalence class in St'(R), 1 <p < oo, 
contains a function in LP(R). This enables us to get hold of a limit for any Cauchy 
sequence in 'V?(R), 1 < p < oo. 

The case p = 1 has been considered by Nelson recently [17]; he showed that 
Y(R) is isometric isomorphic to the space of countably additive, Borel measures 
on R with finite variation. Hence S(R) is also complete. 

Equation (1.1) shows that the Wiener transformation W is an isometry on the 
nonlinear subspace qPS3(R) of <JT2(R). In ?5, we show that W is an isomorphism 
from DO2(R) onto Y2(R) with 

00 - 1/2 -1'2 ll Wil h(x)dx) and IIW-ll =((max xh(x)) / (1.4) 

where h(x) = (2sin2x)/ TX2, X > 0, and h(x) = sup,>. h(t), x > 0 (i.e., h is the 
smallest decreasing function which dominates h). The proof depends on two special 
types of Tauberian theorems which we will develop in ?4 (Theorems 4.5 and 4.6). 

It follows from (1.4) that 

11 (fInh (x) dx)> (fn 2 ) 
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and 

( 2sin2x -1/2 
II W-1li =max 2m) > 1. 

(Numerically, WI WI jz 1.05 and jj W'- jI 1.49.) In view of (1.1), it is natural to ask 
whether W restricted on <VW2(R)>, the closed linear subspace generated by 'll9(R), 
is an isometry. We answer this question negatively and thereby disprove a conjec- 
ture by Masani [161. 

Finally, we observe that the Wiener transformation W is also a bounded linear 
operator from MPR(R) into cVI" (R), 1 <p < 2, i/p + l/pr = 1. 

ACKNOWLEDGEMENT. The proof of the completeness of the space cV)T(R) and of 
the fact that W is an isomorphism on 902(R) onto 512(R), the definition of h and 
the proof of the result 

wi (fl h(x)dx) and 11Wll < (max xh(x))'2 

were given by Lee in his Indiana University doctoral dissertation in 1971 (unpub- 
lished) (cf. [101, [111). The equality (1.4) and the Tauberian results are due to Lau. 
Both authors would like to express their gratitude to Professor Masani for his 
supervision and comments on this work. Their thanks are also due to the referee 
for many helpful suggestions in simplifying the paper. 

2. The space 6)1P (R). Throughout, we assume that f is a complex valued, Borel 
measurable function on R. Let w be a positive Borel measurable function. We will 
use LP(R, w(x) dx) to denote the Banach space of functionsf such that 

/ o I/p 
lIf! = (f|_f(x)IPw(x) dx < oo. 

Let MP(R), 1 < p < o, denote the set of locally p-integrable functionsf such that 

fI T '/1' 
IIfll = sup ( _T If(x)IP dx) < 0. 

<T<2oo -T 

Let IP(R) be the subspace of f in MP(R) such that 

I T 

Em 4T f lf(x)lP dx = 0. 
T- )oo -T 

Let )P(R) be the Marcinkiewicz space defined as in the introduction and let 
6SP(R) be the set of f in GYP (R) such that 

lim I | f(x)IP dx 
T-oo 2T PT 

exists. 

PROPOSITION 2.1. Let 1 < p < oo and let a > 0. Then 

MP (R) S LP (R, 1 
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PROOF. For any T > 1, 
fT If(x)IX l = fT 1+1 

1+ IX a I+a 
dx 

d( 
IA ') 

d 

1 + IxI+a '1T 

I+ (1 +a) XT 

+ (I + a)|( I(Y)I P ay) dx 
J (1 + Xl+a)2 x 

2T 1 CT 

I + Tl+' 2T 
I 
f(y)P y 

+2(1 + a)f 1 + a (+ f(Y)IP dy dx. 

This implies 

a IX+a dx < k(IlfllMpy 

where 

k~ ~1 
= 
2+ 

+ a) 
O dx 

~~~aj1+ Xl+a' 

Hence 

MP(R) C LP(R, 1 + Y 

The strict inclusion follows from the fact that f(x) = (log x)'/1PMIl,x)(x) is in 

LP(R, 1/(1 + IxIl+a)) but is not in MP(R). EO 

PROPOSITION 2.2. Let 1 < p < oo. Then 
(i) MP(R) is a Banach space, 
(ii) G1j(R) is isometric isomorphic to the quotient space MP(R)/IP(R) under the 

natural identification. 

PROOF. We leave the simple proof of (i) to the reader. To prove (ii), we identify 
functions in DIP (R) whose differences have zero norm. We will still use f to denote 
the equivalence class of f in 1?(R). The map T: MP(R) --* 6XP(R) with T(J) = f is 
clearly a contraction. It is also a sujection, for if f is in YP(R), we let 

f'11(x) 
= f(x), X x> 1, 

f = lf )' Lx: < 1. 

Thenf' E= MP(R) and Ilf - f'Il = 0. Hence T(f') = f' = f in DY1?(R). Also note 
that T 1(O) = IP(R). This induces a bijection f: MP(R)/IP(R) ..* G1P(R) and 11f11 
< 1. To show that si is an isometry, we need only show that 

inf Tlf+gjjmp < ( Tm If(x)tP dx) 
g ERIP (R) T--*oo T 
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But this follows directly from 

sup (T I If(X) - fX[-a, a(X)lp dx 
1 <IT -T 

sup(fT I f(xIP dx) Va>l1. Fl 
a<T 2 I T) 

In the following, we will give an example that 6YSP(R) is not a linear subspace in 
I1MP(R): Let En = [(2n)!, (2n + 1)!], n > O,and letf = Xu E ' 

g(x) = XuEuI(X)-2R XO? and h(x)={2' xV O, 

O, x < O, O, x <O. 

It is clear thatf = g + h, 

1I TT l2T I )P 

lim - I jgljdx = lim -I - dx= T--+oo 2 TiT T--*oo 
-- 

and 

lim jihiP dx=- 
T-- 2T -T 

Hence g, h E ISUP(R). Observe also that 

lim 1 (2n)! tfl -= lim 2(2n)! J Ifl 
n-*o2(2n)' (2n)! n--*o 2(2n)!0 jj 

< li (2n -1)! =0 
n- * 2(2n)! 

and 

1 m (2n + )! 
ffl-40= 

2(2+ (2nl+ 1)! 
fIP 

nlm 2(2n + 1)!' (2n +)! n-im 2(2n + 1)! 

> (m 2n + 1)!-(2n)! = 1 
n--*oo 2(2n + 1)! 2 

This shows thatf V 1SP (R) and ~SP (R) is not a linear subspace of M1P (R). 
We remark that in [9], we prove that for 1 <p < oo, each f E 6WSP (R) with 

If II = 1 is an extreme point of the unit sphere S(6TP (R)). The set of such f, 
however, does not exhaust all extreme points of S(G1PP(R)). For p = 1, S(9. (R)) 
does not contain any extreme points. The nonlinear subspace 61P (R) has also been 
studied by Masani in [15] where he introduced vector graph theory and conditional 
Banach spaces. For other properties of YTP(R) and its subspaces, the reader may 
refer to [1], [3] and [9]. 

3. The spaces \f(R) and their completeness. For each h E R, we define Th and Ah 

as 
(Trf)(x) = f(x + h) and AJ = (Th - I)f 

where x E R andf is a Borel measurable function on R. Let C\>l'(R) be defined as in 

the introduction; it follows directly from the definition that forf E 2P(R), 
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_ 1 X \l /p 

llf= hlim (h f (h - h T-h)f(x)IP dx) 
h0O+ 2 -o 

= lim (jI( h l)fx)LP dx) 
_h0+ oo 

By identifying functions whose differences have zero norm, it is easy to prove that 
('il(R), I * 11) is a normed linear space. In the following, we will show that each 
f E ??f(R), 1 <p < oo, is equivalent to a g E LP(R), i.e., Ilf - gI = 0. This fact 
will be useful in proving the completeness of 'VP (R), 1 <p < oo (Theorem 3.6) and 
the surjectivity of the Wiener transformation from <2(R) onto cV2(R) (Theorem 
5.2). 

Let A be a subset in a Banach space X; we will use <A> to denote the closed 
linear subspace generated by A. Let x(.) be a continuous function on R to X; we 
call Sx = <{xb - xa: a, b E RI> the chordal subspace of the curve x(.). The 
function x(.) is a helix in X if there exists a strongly continuous group of isometries 
{ Uj)tE. on Sx onto Sx such that, for any t in R, 

Ut(xb - Xa) = Xb+t -Xa+t; 

{ Ut}teR is called the shift group of the helix x( 

THEOREM 3.1 (MASANI [14]). Let x(.) be a helix in X with shift group {Ut}PER 
Then 

rm 
ax= e-(xo - x,) dt 

(Bochner integral) exists and is in Sx d Moreover, 

xb xa=(Ub Ua Ut dt)(ax) Va, b ER. 

We call ax the average vector of the helix x(.)* 

LEMmA 3.2. Let 1 < p < oo and let f E cVJ(R). If x, = TJ - f, then x(.) is a helix 
in LD(R) with shift group {it) }tR and the average vector is given by 

e-t(f- Tf) dt E Sx C LP(R). 

PROOF. Sincef E 'V"(R), xt = (T - l)f E LP(R) and 
00 

him J_(Th - I)f(X)I" dX = 0. 

It follows that for any t E R, 

lir fJ Ixt+h(X) - xt(X)IP dX = J fI(t+h - ;)f(X)IP dA 

- h-O fI(rh - I)f(X)IP dX = 0. 
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Hence x(.): R -* LP(R) is continuous. By definition, we can show that, for any a, b 
and t E R, T(xb - xa) = xb+t - xa+t, This implies that {;ItER is a strongly 
continuous group of isometries from Sx (C LP(R)) onto S. and x(.) is a helix in 
LP(R) with shift group {Tlt}ER. Finally, by Theorem 3.1, there is a g E - 5 LP(R) 
such that 

00 00 
g =J et(xo- xt) dt = e-t(f- TJ) dt. 

THEOREM 3.3. Let f E cV (R), 1 < p < oo. Then there exists a g E LP(R) such 
that lf- gI1j, = 0. 

PROOF. Let g = fo'et(xo - xt) dt be as in Lemma 3.2. For any h > 0, we have 
(Theorem 3.1) 

(Th - T-h)(g ) = Ttg dt 

and ([8, p. 82]) 

Tt l tg dt| < | || t'llp dt < 2hll|gllp. 

Hence 

_ I/p ( ) If- glv= ,:izm (1 1/P h - Th) - f )II = 0. E 

The theorem is not true for p = 1 as V (R) is isometric isomorphic to the space 
of countably additive Borel measures on R with finite variation [171. 

In the following, we will consider the completeness of Stl(R), 1 <p < oo. The 
case p = 1 follows directly from the above isometric characterization of V (R). 

Let B(LP(R)) denote the space of bounded linear operators on LP(R). For any 
a, n in R with a < b, we let 

la,b = b - a { t dt, 

the integral being a Riemann integral in the strong operator topology in B(LP(R)) 
([8, pp. 62-67]). We note the following facts: 

Vs E R, TsIa,b Ia,bTs (3.1) 

Vf E LP(R), lM Io, h(f) =f in LP(R), (3.2) 

Vh > O, 1IIO,hll < 1, (3.3) 

Va, b E R, a < b and Vf E LP(R), 'a,b(f) e 6DA, (3.4) 

where 6DA is the domain of the infinitesimal generator A of the translation group 
{Th),heR on LP(R) ([8, p. 307]). It is well known that A is the restriction of the 
differential operator on 6DA and 6DA = {f E LP(R): f is absolutely continuous and 

f E LP(R)}. Let g E 6DA; then 
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lim ((Th - T-09p = lim (2h)"'1' (Th - IIP 

h \*O 2hJ /oh- 2h 
= 0 * IIAgllp = 0. 

Therefore, we have 

PROPOSITION 3.4. For 1 < p < oo, let f E LP(R) be absolutely continuous and 
f' E LP(R). Then IlIfIK, = 0. 

Let a < b; then (3.4) and Proposition 3.4 imply that IIIa, b(f)I Icv = 0 for all 
f E LP(R), 1 <p < 00. From this, we immediately draw the following conclusion: 

LEMMA 3.5. Let 1 <p < oo, let f,fl, . .. . fk E LP(R) and let a,, ... . ak, 

bI, . . ., bk E R with a, < b, Then 

|tf 2 Ia bn (fn ) || llfllcvp 

THEOREM 3.6. For 1 < p < oo, the normed linear space cV)(R) is complete. 

PROOF. For convenience, we let Io b = Ib. Let {fn} be a Cauchy sequence in 
cVJl(R); it suffices to show that {fnj has a convergent subsequence. Without loss of 
generality, we assume that 

llfn+l -fnill? < 1/2 n+l. 

Also, by Theorem 3.3, we may assume that fn e LP(R). For n > 1, select a 
decreasing sequence of positive numbers {hn) in (0, 1) such that limn,, hn = 0 and 
for 0 <h <h, 

(1/2h)"/Ill(Th - T-h)(fn+l -f)I1p < 1/2 (3.5) 

Define el = 1 and en, n > 2 satisfying 

{en) j\O asn-oo, (3.6) 

11(Ien - l)fijjP < (2hn)'/P/2n, (3.7) 

II(IeI-(1)(fm-fi)jIp < (2hn)"//2, m = n, n-1 and I=1, . . ., m-1. 

(3.8) 

((3.7) and (3.8) follow from (3.2).) For any positive integersj < k, 

k k 

|| ,(Ien+, Ij,fn| <; 1j(l(r,,+ 
- 

)(fn fi)llpD 

+ l('e - 1)(fn - f)llp 

+ 11 (I,", ,-)filip + 11(I - O)filip) 

< 1/2i-4 (by (3.7) and (3.8)). 
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Therefore, the sequence 

k 00o 

Ie{ I(fl) + k (Ie-+l Iew )(fn)} n=l kml 

is Cauchy in L-(R) and converges to, say, f E LP(R), i.e., 

f = h1(f1) + 2 (Ie" - Ie,)fn in LP(R). (3.9) 

Note that for each g e LP(R), by (3.2) and the telescoping of the terms, 

g = Ie (g) + 2 (Ie +,-Ie,)g in LP(R). (3.10) 

We will estimate the term IIf - fkII: 

If - f+ I ( 2h PTh T - I 

l h-O(2h2) h (h -h)(Iei(f- fk) + - (I,+ I.,)(fn -fk)) 

(by (3.9), (3.10)) 
1\i/p 00 

i ( 2h ) l(Th -T-h) 2 (I +, - I, )(fn -fk) 
h--+O 2 h ~ n-k+1 p 

(by Lemma 3.5) 
For abbreviation, for any positive integers r < 1 and h > 0, let 

A = ( )I/P (Trh - T +1 -If I)(fn fk)) 

Fix h e (0, hk) and let q > k be the unique integer such that hq < h < hq For 
1 > q, we have Ah,k,l < Ah,k,q + Ah,qi, Observe that 

I I/P ~ ~q n (1) 
-T- ) (I 

/P 
i-1 Ah,k,q 2h ) (h - - I () 2 (fj f-+) 

n-k+1 ~ jk+1 

I/P ~~~q 
= ( 2h ) ||(Th - T-h) * (Ie+- Ie)(f1 - fj| 

p 

(changing order of summation and adding up telescoping terms) 

I\/p q (~~~s h +1 + ) T-h)(fj - j-l)lp 

< 22h( ) 2 II(h - T-h)(fj -f-1)ilp (by (3.3)) 
j-k+1 
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and 

A^,, 
I/ 

JI 2 1(Th -T _ h)(Ie,,+ l -Ie, (n fk)li Ah,q,l 2 nq+ - - 
n- fk)llp 

I 
I l/p 

n<2 1 2hn l !(Ie+ -I,)(fn -fk )ll (by (3.3)) 

I I l/p 

n 2 h (11( e,,+ - 1)(fn fk)IIp 
+ 

ll(Ie,, 
- fkn ) 11P) 

< 1/2 k-2 (by (3.8)). 

We have shown that for any integer k, for any h E (0, hk), and for large integer I 
(i.e., 1 > q as defined previously), Ah,k,l < 1 /2k-3. This implies that 

Ilf -fkll'\ < 1/2 k-3 

and hence {fk) converges to f in Vcw(R). f 
We conclude this section by considering a related space, SV(C), C = [0, 2X], 

which consists of those Borel measurable functions on R with period 27T and 

_ O(h f71 )1/P 

By identifying functions whose differences have zero norm, it is easy to show that 
Stl(C) is a normed linear space. If we consider functions on C as 2X-periodic 
functions on R, we can prove the following (compare this to Theorem 3.3): 

THEOREM 3.7. For 1 < p < oo, CVP(C) C LP(C). 

REMARK. In [6], Hardy and Littlewood-proved that 'fP(c) n L'(C) C LP(C), 1 

<p < 00. 

The proof depends on two results due to Carroll [4] and Boas [2]: Let ALP(C) 
denote the set of functions f (not necessary measurable) on C such that A,f = (Th 

- 1)f is in LP(C). Carroll proved that if f E ALP(C), 1 < p < oo, thenf admits a 
decompositionf = g + H + S where g E LP(C), 

Iff 

H(h) =f A,f(x) dx, 

which is additive on C, and AhS(x) = 0 for almost all x. Moreover, Boas proved 
that if the above S is measurable, then S is constant a.e. 

PROOF OF THEOREM 3.7. Let f E 'VPf(C). Then A,f E LP(C). Let g, H and S be 
defined as above. Since f is measurable and A,f is integrable on C, Tonelli's 
theorem applied to (AJr)+ and (AJf- shows that H is measurable. In addition, the 
expression for H shows that H is additive and periodic on R, so that it is identically 
zero. This implies that S is measurable and hence S is a constant a.e. Therefore 
f=g+ Ca.e.andf ELP(R). O 

By using Theorem 3.7 and the same argument as in Theorem 3.6, we obtain 

THEOREM 3.8. For 1 < p < o0, 'VP (C) is a Banach space. 
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4. Tauberian theorems. In proving the identity (1.1), Wiener introduced a fairly 
general form of Tauberian theorem which applies to functions in QS(R). In this 
section, we will consider two similar types of theorems which apply to functions in 

ct1?(R). 

Let g be a function of bounded variation on [a, b]. For all x E (a, b], let 

ttg(a, x] = g(x + ) - g(a + ). Then it is well known that jig has a unique countably 
additive, regular extension to the a-algebra of Borel subsets of [a, b]. The following 
integration by parts holds. 

LEMMA 4.1. Let f, g be measurable functions on [a, b] such that f is integrable and g 
is of bounded variation. Then 

fbf(x)g(x) dx = (L f(x) dx)g(b) - ( f(t) dt) dLg(x). 

PROOF. The result follows by applying the Fubini theorem to the right-hand side 
of the identity 

fbf(x)g(x) dx = Lf(x)(f dt&g(t) + g(a +) dx. O 

Let S + denote the set of positive Borel measurable functions on [0, oo] such that 

sup T f(x) dx < 1. 
<1 T 1 

For any T, a > 0 and for any f E S +, the substitution x = t/ T shows that 

f(Tx) dx = a aT J f(t) dt) < a. 

PROPOSITION 4.2. Let h be a positive decreasing integrable function on [0, oo). Then 
(i) fo?f(Tx)h(x) dx < f 'h(x) dx for allf E S +, T > 1, 
(ii) limnaO f a0f(Tx)h(x) dx = 0 uniformly for allf E S +, T > 1. 

PROOF. (i) Note that because h is a decreasing function, the corresponding 
measure ILh is negative. Hence for any / > 0, f E S +, 

f f(Tx)h(x) dx = (f f(Tx) dx)h(1) - f | f(Tt) dt) diL(x) 

<(fh(f))-f xd,u.=f h(x)dx. 

Letting , -B oo, we obtain (i). To prove (ii), we observe that by (i), for each 
f E S+, T > 0, f0f(Tx)h(x) dx < oo; hence 

t00 

urnm f f(Tx)h(x) dx = 0. a a+o 
In order to obtain the uniform convergence forf E S + and T > 1, we let 

ha (x) 
h (a), if x a, 

hx,if x >a. 
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By applying (i) to ha, we have forf E S +, T > 1, 

f f( Tx) h(x) dx < f( Tx)ha(x) dx 

< f h. (X) dx = ah(a) + f h(x) dx. 

Note that because h is decreasing, 
a 

h(a) S h(x)dx -0 asa-*oo. 
/2 

Also, 

f h(x)dx-*0 asa-oo. 

This implies that 
0 

lim f f(Tx)h(x)dx = 0 uniforily forallf S+, T > 1. 0 

LEMMA 4.3. Let h be a positive continuous function on [0, oo) and let h(x)= 

sup,>xh(t). Suppose that h E L'[0, oo) and suppose there exist disjoint intervals 

(ai, bi), i = 1, . .. , k, in [0, oo) such that for each x E (a,, b,), h(x) < h(b,). Let 

= ? (h(bi)(bi - a) - h(x) dx). 

Then 

00 00 
sup lim f(Tx)h(x) dx > h(x) dx + n. 

feS+ T-* 0O 

PROOF. It suffices to show that for any 0 < e < q, there exists an f E S + such 
that 

lim f f(Tx)h(x) dx > f h(x) dx + (q - e). (4.1) 

We will consider the case k = I only. The case k > I follows from the same idea 
of proof. We write a, = a and b, = b and without loss of generality assume that 
a > 0. Otherwise, let {adj 0 and let 

r= h(b)(b - n) -f h(x) dx; 

then {,n} q. We can prove (4.1) for (d,n, b) and qn. 
Since h is continuous, for e > 0, we can find 0 < el, 0 < 8 < e/8 such that 

x- bI < 8 implies that jh(x) - h(b)l < e1 and 

e b+( 
'q - < (h(b) - e1)(b + '5- a) -f h (x) dx. (4.2) 

2~~~~~~~~~~ 
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Since h is decreasing and integrable, Proposition 4.2(ii) implies that there exists an 
a > b + 8 such that 

p| p(Tx)h(x) dx < | p(Tx)h(x) dx < 8 ep E S +, T > 1. 

In particular, 

t00 
f h(x) dx < 6. 

Let { ) be a sequence of positive numbers such that I 8 n6,, < 8 and let M be the 
upper bound of h. Let T1 > 1 and let 

tx i, 0 <(x < aT1, 
f1(x) ( o aT1 < x. 

Suppose we have chosen Tn 1' fn- * Select Tn such that 

Tn > max{ (-Tn- 1 T}-I 

and define 

0, O<x<aTn-, 

1, aTn_I (x<aTn, 

0, aTn < X < bTn9 

fn(x)= b+ 8 -a, bTn < x < (b + 8)T 

1, (b + 8) Tn <Sx <aTn, 

0, aTn <x. 

Note that the functions {fn}) have disjoint supports. Letf = ffn. It is easy to 
show that 

T 

f(x) dx = 1 for T E[1, oo)\ U (aTn, (b + 8)Tn) 

and 
T 00 

+T f(x) dx < 1 for T E U (aT,, (b + 8)Tn). 
0 ~~~~~n-2 

Hence f E S+. We will show that 

lim f f(Tnx)h(x) dx > f h(x) dx + (r- ). 
n--+oo 
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Forn > 1, 

f(T.x)h(x) dx - f. (T"x)h(x) dx 

< Jf f(Tnx)h(x) dx - J fn(Tnx)h(x) dx + 8 

< f f f(Tnx)h(x) dx + X o 
fJ(Tnx)h(x) dx + 8 

i=l O ~~~i-n+lO 

< "l fa>i(x) dx + 0 + 8 

n-I M n-I 

< - T aT, + 8 < i 1 + 8 < 28 

and 
a 

fn(Tnx)h(x) dx 

a 
h(x)dx b+8 (b + )-a h(x) dx + h(x) dx 

aT,, - I/ Tn b b+ 8 

> fh(x) dx-M n + (b + 8-a)(h(b)-el) + h(x) dx 

> f h(x) dx - n + (?1-j) (by (4.2)) 

> h(x) dx + - (28 + 

Combining the above two estimations we have, for n> 1, 

f f(Tnx)h(x) dx > f h(x) dx + (7 -E). E 

PROPOSITION 4.4. Let h be a positive continuous function on [0, co). Let h(x) = 

supt>xh(x) and assume that hi is integrable. Then 

sup lm f(Tx)h(x) dx) =f h(x) dx. 
f E=S + T-o ? ? 

PROOF. Since h is decreasing, by Proposition 4.2(i), 

sup (lim f f(Tx)h(x) dx) < sup (im f(Tx)h(x) dx) 
f ES + Too ? f =S + Too ?o 

< f h(x) dx. 

We will prove the reverse inequality. That h is integrable yields an a > 0 such that 
f 'h(x) dx < E. Since h is continuous, so is h; hence the set {x E (0, a): h(x) > 
h(x)} is the union of a (finite or infinite) sequence of disjoint open intervals 
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{(a,, b,)} in (0, a). Let 1 < r < oo be the number of such intervals. Note that h is 
constant on each (a,, bl). It follows that 

fh(x) dx = f h(x) dx + > (h(bi)(b - ai) - f h(x) dx) 

Lemma 4.3 implies that for any integer k, 0 < k < r, 

00 
sup lim f f(Tx)h(x) dx 

f es+ T--+O 

> h(x) dx + h(bi)(bi - a,) 
b 

f 'h(x) dx). 

Hence, 

sup(im f f(Tx)h(x) dx) > h(x)dx 
f E-S+ T pm O 

and the proof is completed by observing that fJ?h(x) dx <e. C[ 
Let 6RX denote the class of positive Borel measurable functions f on [0, oo) such 

that hinT,(1/ T)fIof(x) dx < oo. The following is the first main result of this 
section. 

THEOREM 4.5. Let h be a positive, continuous function on [0, oo). Assume that (i) 
h(x) = sup,>xh(t) is integrable and C1 = Jfoh(x) dx, and (ii)f e %+. Then 

Uin f f(Tx)h(x) dx <C1 iim 1 f(x) dx. 
T---- ?0 T-*oo 0 

Moreover, C1 is the best estimation of the inequality for the class of functions f in 

PROOF. For any function p which is integrable on [0, p) and vanishes on [p, oo), 

him | p(Tx)h(x) dx = him 
I 

p(t)h-t dt 
T--*oo T--.oo T . \T/ 

< 
T 
hm 

mo Pp(t) dt = 0 (4.3) 

where M = sup,>Oh(t). Letfp = fX[P0,), p > 1. It follows from (4.3) that 

him J' f(Tx)h(x) dx = him 00 fp(Tx)h(x) dx. (4.4) 
T-*oo O T-*oo 

Applying Proposition 4.4 with (supT>P(l / T)JoTf)- lfp E S +, we get 

00 I T 
him f fp(Tx)h(x)dx < C1 sup - ff(x) dx, p > 0. 

T-*oo T>p 0 

Hence by (4.4), 

him | f(Tx)h(x) dx < C1 T f(x) dx. 
T-o*oo T-oo 
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To prove the last assertion, it suffices to show that for any E > 0, there exists an , 
such that 

I T oo 
lim T f(x) dx < 1 and hm f f8(Tx)h(x) dx S (C1 -E). 

But this inequality is obvious from Proposition 4.4. EO 
Our second main result in this section is: 

THEOREM 4.6. Let h be a positive continuous function on [0, oo) such that h(x) = 

supt>xh(t) is integrable. Suppose (i) there is an xo which satisfies xoh(xo) = 

maxx>oxh(x) = C2 and h(x) > h(xo) for all x in [0, xo], (ii)f E 9)+. Then 

C2lim +fI f(x) dx < fi f | 0(Tx)h(x) dx. 
T-+oo T-*oo 

Moreover, C2 is the best estimation of the inequality for f E '6) . 

PROOF. Letf be given as above; then 

C2yT 
I Sf(x) dx = Ty f(x)h(x0) dx 

< 
TO f xf(x)h( x) dx (since h(y) > h(xo) Vy E[0, x0]) 

- fXof(Tx)h(x) dx 

00 
< f(Tx)h(x) dx. 

By taking limit supremum on both sides, the first part of the theorem follows. 
To prove the second part, we will construct, for a given 0 < e < 1, a positive f 

such that 

1~ T oo 
lim -T (X) dx = f and lim f(Tx)h(x) dx < C2 +E. 

T- j and T ?-*oo 

We will need the following statement, where the proof depends on the uniform 
continuity of h: for any a > 0, 

lim X0 + 6 fI(xo+S) h(x) dx = (f3x0)h(f3x0) 

uniformly for 0 S /3 < a. (4.5) 

For any 0 < e < 1, we choose a > x0 such that 

f p(Tx)h(x) dx <8 Vp E S+ and T > 1 (4.6) 

(Proposition 4.2(ii)). Since xoh(xo) = maxx>0xh(x), by (4.5), there exists 0 < 8 < 
a - x0 which satisfies 

x0 + (xo+ ?) h(x) dx < xoh(xo) + VO < P < 
a 

I~~~~x0~ ~ xxo~0j-- / ~- 
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Let T1 > I and select Tn > T_1 so that 

Tn- I xo 1 I 1 
Tn a Tn n 

and 
nI xo Ti/Tn6 

e(7 
| h(x) dx < +(4.7) 

Let 

x0 +6 00 

Sn 6 8 X[XOT,,, (X0+8)T.,]X and f,= a fn 
Note that the functions {fn} have disjoint supports. For any n, 

1 |(xo + 8) Tn f(x) d 
(Xo + 86) Tn f 

n-I 

(Xo+)Tn(XO + 8)Tn + Y (XO + ,8)Ti) (x0 + 6)Tni )7) 
1 n-I 1 

=Ti < 1+ 

Since (1/ T)fOTf(x) dx has a local maximum at each (xo + 8) T, we have 

sup 1 (X) dx < 2 and lim T |f(x) dx = 1. (4.8) 
I<T T T-*oo 

Now for any T > 1, there exists an n such that xoTn < aT < xoTn + Hence 
o < Tn/T <a/xo and 

00 ae 
f(Tx)h(x) dx < | fTx)h(x)dx + e (by (4.6) and (4.8)) 

n 

i(Tx)h(x) dx + 

<-n x07/T TX0 + 6 h(x) dx + 

<x +6 f(xo+8)T/T h(x) dx + (by (4.7)) 

< xoh(xo) + e/4 + e/2 (by (4.6)) 

< C2 + E. 

The proof is complete by taking the limit supremum on T. El 
We remark that the function h(x) = 12sinex/7rxP , x > 0, 1 <p < oo, satisfies 

the hypotheses in Theorems 4.5 and 4.6. We leave the simple verification to the 
reader. This function will be considered throughout the rest of the paper. 
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5. The Wiener transformation W. 
A. The isomorphic nature of W on Dk(R). 
Proposition 2.1 implies that M2(R) C L2(R, dx/(l + x2)); hence forf E M2(R), 

the integral 

A 1+1? If(X)12 dx 

exists. This implies that 

I oo1? f(x) e- iuxd 
-oo 1 - 

dx 

converges in mean square. In [18], Wiener defined the following transformation W: 
forf E M2(R), let W(f) = g where 

g(u)= 2 (f + ff(x)e. dx+ f(x) -1 dx). 

We call W the Wiener transformation. Now, for h > 0, 

I 00 eilm- e- ix 

(Thg - r-hg)(u) = 2 f f(x) ix e-eix dx 

= ff(x) 2sin(hx)e_dx. 

Thus rhg - T-g is the Fourier transformation of 

f(x) sin(hx) 

and the Plancherel theorem implies 

2h f_ g(u + h) - g(u - h)2du = f7 If(x)I2sinhx dx 

Hence 

II W(f)I lim - ( If(x)12 sin2hx 
h-*O+ h .7X_ 

= 
lim | 

If(Tx)I2sinx 
dx. T- -oo0 W7X2 

Letting h(x) = (2sin2x)/ 7x2, x > 0, and f'(x) = I(If(x)12 + If(-X)l2), X > 0, f E 
M2(R), Theorem 4.5 and (5.1) imply that W(f) E cV2(R) and W(f) = 0 for all 
f E I2(R). Since O2(R) = M2(R)/12(R) (Proposition 2.2), W induces a map from 
G)2(R) into S2(R). 

THEOREM 5.1 (WIENER [18]). Letf E WVS2(R) C )2(R). Then || W(f)l|V = |lf||62. 

Our main result is: 
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THEOREM 5.2. The Wiener transformation W defines an isomorphism from 02(R) 
onto V2(R) with 

00 ~~1/2 Ma/ h() / 
ii = (f h(x) dx and 11 W- = (maX xh(x)) 

where h(x) = (2sin2x)/I7X2, X > 0, and h(x) = supt>xh(t). 

PROOF. It is easy to show that h(x) = (2sin2x)/,Wx2, x > 0, satisfies the hypothe- 
ses in Theorems 4.5 and 4.6. By letting 

f'(x) = 2(If(x)2 + If(_X)12), x > 0 f E 9Th2(R) 

the same theorems yield 

C2 lim 24f If(x)12dx < lim fIf(Tx)12h(x) dx 
T-*oo -T T--oo -00 

< C1 iHm I f jf(x)12 f e 933(R), 
T--oo -T 

where C1 = f1oh(x) dx and C2 = maxx>oxh(x). By (5.1), we have 

C211f 112 < II W(f)112 < Clllf 112, f e ,2(R) 
Moreover, Theorems 4.5 and 4.6 imply that C1 and C2 are the best constants to 
estimate the above inequalities. Hence we conclude that W is an isomorphism from 
92(R) into cV(R) with 

IiWIi = C1/2 and IIW-1ll = C2-1/2 
It remains to show that W is a surection. Let g E V2(R); by Theorem 3.3, we 

may assume that g E L2(R). Let g be the (inverse) Fourier transformation of g, i.e. 

g(x) = 
V - f g(u)eiux du 

and letf(x) = -iV5i x(x), x E R. We claim that (i)f E GT2(R) and (ii) W() = 

g in cV2(R). To prove (i), note that 

(,h(g) 
- T-h(g)) (x) = (e-ix - elhx)g(x) = -2i(sin(hx))g(x). (5.2) 

As C2 = maxx>0(2sin2x)/-rx, Theorem 4.6 applied to f'(x) = 2(If(x)12 + 

If(-x)12), x > 0, yields 

I T - ()1 X<0 i2 
C2 lim 2T|_If(x)I2dx lim f If(Tx)2m 2 dx 

T-oo 00 7TX 

I(00 .,-~2 in2hx d 

h-1* 00 
T 

= lim - _ 219g(x)2sin2hxdx 
h-O+ h -_ 

= 11 gI2vi (by (5.2) and the Plancherel theorem) 
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Thusf E D12(R). To prove (ii), we observe that 

W(f)(U) = + J f(x) e dx + f_f(x) e 1 dx) 

1 (? ^( )(x)-') dx i fj^x(x) dx) 

= g(u) + C a.e. 

where C = -(1 /27T)J1 g(x) dx. Since constant functions in YV(R) are equivalent 
to zero, we have W(f) = g in 512(R). O 

B. The nonisometric nature of Won <KtS5(R)>. 
Let h(x) = (2sin2x)/,fx2, x > 0. It follows from Theorem 5.2 and elementary. 

calculus that 

11WII = h(x) dx) > - x2 dx) =1 

and 
( 2sin2x -1/2 

=1wli max I >1 
X>O 7TX/ 

In view of the fact that W is an isometry on 'll9(R) (Theorem 5.1), Masani [16] 
asked whether W is an isometry when it is restricted on <K'OS(R)>, the closed linear 
subspace generated by 6l2(R). 

Let GVj2(R) be the subset of Y (R) such that for g E 60(R), 

lim 2 fIg(u + h)-g(u -h)l2du 

exists. Theorems 5.1 and 5.2 imply that W is an isomorphism from <K'i2(R)> onto 
<G12(R)>. In the following, we will give two examples 11 and 12 EK <62(R)> with 

111111 = 111211 = 1 and 11 W(1j)II > 1 and 11 W(12)II < 1. Hence neither W nor W can 
be a contraction on <KQS2(R)>, <K1G2(R)> respectively. These answer Masani's ques- 
tion negatively. Both examples refine the functions constructed in the proof of 
Lemma 4.3 and Theorem 4.6. 

EXAMPLE 5.3. There exists an 11 in <KIS2(R)> with ll11,II2 = 1 and 1I W(l1)llV > 1. 
We will use the same notation as in Lemma 4.3 with h(x) = (2sin2x)/Tx2, k = 1, 

and [a,, bl] = [a, bJ such that h(b) = h(a) > h(x), x E (a, b). We assume further 
that the 8 we choose in Lemma 4.3 satisfies (b + 8 - a)/3 = (m + 1)2 for some 

positive integer m. Let T",, andf be as in Lemma 4.3. Define for n > 1, 1 < i < 
2m + 1, 

O, O < x < aT,,-, 

1(-)'+', aTn- I x <aTn, 

i -(-l)i, aTn < X < bTn', 
fn 

(-2 bTn A< x<(b +8)Tn, 

(_)i+ 1, (b + 8)Tn < x < aTn, 

0, aTn x. 



ON GENERALIZED HARMONIC ANALYSIS 95 

Note that W Mj"(x) + 4)2 = f"(x). For each i, the functions {}f 1 have disjoint 
supports. Letf' = : 1fn. Then Ifl 4 andf' is in W(R) for each i. Let 

11=V22m+1 
1 

'1 =VI2E;fi+l 4. f 
= 

Then 11 EK1 <qe(R)> and 

2m+1 oo 2 

II(x)12 = 2 2 (o fi(x) + 2 

2m+1 1 2 

= 2 E fk(x) + where x E supp(fk) 
i=1 

= 2fk(x) = 2f(x). 
Hence 

I%I2W = urm fT| l(x)I2dx = lim T ff(x) dx =1 
T-*oo -T T-*oo ? 

and by (5.1) and (4.1), 

jjW(l1)1j = lim J Ili(Tx)I2 X dx 
T-.oo 0 71TX 

lim 2f(T dx 
T-*oo 7TX2 

>f00 2sin2x dx = 1. 

EXAMPLE 5.4. There exists an 12 e <KW(R)> such that 1l1211%2 = 1 and jj W(l,)IIv 
<1. 

We use the same notation as in the proof of Theorem 4.6 with h(x)= 
(2sin2x)/ rx2 and C2 = maxx;Oxh(x) < 1. We assume that 0 < e < 1 - C2 and let 
8 be as in Theorem 4.6 and satisfy the condition: 

n0 + 6 - (2m)2 for some integer m. 

Let { Tn) be as in Theorem 4.6 and for n > 1,1 < i < 2m, define 

0 O x < XOTn- 1 

(- 1l)i XOTn-I < x < XOT 

fn Ix 1 , XOTn < x < (xo + 
8)1Tn 

0, (xo + 8)T T < x. 

Then 

(2m )2 = XO+ 68 
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Note that for each fixed i, the supports of the functions {f, )%'. are disjoint. Let 
n= Zn ..1f; then P1 1 andfi E 'lIS(R). Let 12=W 21jfi. It follows that 

12E <KVQ(R)> and 

_m 
I T 112(X)12 dx = lim ? Cf(x) dx= 

m2 T 1T T f.1 
x 

T-*oo T T-_Too 0 

wheref is defined in Theorem 4.6. By (5.1) and the construction of f, we have 

jW(I)l2)V2 = rim j 2f(Tx) - 2 dx<C2+E< 1. 
T -oo O fX 

C. Won MP(R). 
It is well known that for 1 < p < 2, the Fourier transformation is a contraction 

from LP(R) into LP'(R), I/p + l/p' = 1. Letf E %P(R), 1 <p < 2, and let g = 

W(f). Since Thg - Thg is the Fourier transformation of 

f(x) sin(hx) 

we have 

(j g(u + h) - g(u - h)I- du )i/ 

i Pf(x) sin(hx) dx ) 

This implies 

g = g im( 2h f Ig(u + h) - g(u - h)IP'du 

< 0+('7ThP' i-xf(x) s x) | dx) 

00 (|X f( sinPx \ d i/P 
Tm cxATOO '3IMP dx) (5.3) 

THEOREM 5.5. For 1 <p < 2, the Wiener transformation W defines a bounded 
linear operator from 61?(R) into cV7" (R) with 

/ 0 I/ 'lp 
jj Wil < (f h(x) dx 

where h(x) = I(2sinmx)/,rxPI, x > 0. 

PROOF. The result follows from Theorem 4.5 and (5.3). E0 
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